
CS 267 Applications of Parallel Computers

Lecture 10:

Sources of Parallelism and Locality
(Part 2)

David H. Bailey

based on previous lecture notes by Jim
Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Recap of last lecture

° Simulation models

° A model problem: sharks and fish

° Discrete event systems

° Particle systems

° Lumped systems - ordinary differential equations
(ODEs)

Outline

° Continuation of (ODEs)

° Partial Differential Equations (PDEs)

Ordinary Differential Equations
ODEs

Solving ODEs

° Explicit methods to compute solution(t)
• Example: Euler’s method.

• Simple algorithm: sparse matrix vector multiply.

• May need to take very small time steps, especially if system is stiff (i.e.
can change rapidly).

° Implicit methods to compute solution(t)
• Example: Backward Euler’s Method.

• Larger timesteps, especially for stiff problems.

• More difficult algorithm: solve a sparse linear system.

° Computing modes of vibration
• Finding eigenvalues and eigenvectors.

• Example: do resonant modes of building match earthquakes?

° All these reduce to sparse matrix problems
• Explicit: sparse matrix-vector multiplication.

• Implicit: solve a sparse linear system

- direct solvers (Gaussian elimination).

- iterative solvers (use sparse matrix-vector multiplication).

• Eigenvalue/vector algorithms may also be explicit or implicit.

Solving ODEs - Details

° Assume ODE is x’(t) = f(x) = A*x, where A is a sparse matrix

• Try to compute x(i*dt) = x[i] at i=0,1,2,…

• Approximate x’(i*dt) by (x[i+1] - x[i])/dt

° Euler’s method:

• Approximate x’(t)=A*x by (x[i+1] - x[i])/dt = A*x[i] and solve for
x[i+1].

• x[i+1] = (I+dt*A)*x[i], i.e. sparse matrix-vector multiplication.

° Backward Euler’s method:

• Approximate x’(t)=A*x by (x[i+1] - x[i])/dt = A*x[i+1] and solve for
x[i+1].

• (I - dt*A)*x[i+1] = x[i], i.e. we need to solve a sparse linear system
of equations.

° Modes of vibration

• Seek solution of x’’(t) = A*x of form x(t) = sin(f*t)*x0, where x0 is a
constant vector.

• Plug in to get -f *x0 = A*x0, so that -f is an eigenvalue and x0 is
an eigenvector of A.

• Solution schemes reduce either to sparse-matrix multiplication,
or solving sparse linear systems.

2 2

Parallelism in Sparse Matrix-vector multiplication

° y = A*x, where A is sparse and n x n

° Questions
• which processors store

- y[i], x[i], and A[i,j]

• which processors compute

- y[i] = sum (from 1 to n) A[i,j] * x[j]

 = (row i of A) * x … a sparse dot product

° Partitioning
• Partition index set {1,…,n} = N1 u N2 u … u Np.

• For all i in Nk, Processor k stores y[i], x[i], and row i of A

• For all i in Nk, Processor k computes y[i] = (row i of A) * x

- “owner computes” rule: Processor k compute the y[i]s it owns.

° Goals of partitioning
• balance load (how is load measured?).

• balance storage (how much does each processor store?).

• minimize communication (how much is communicated?).

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

2

1

5

4

° Relationship between matrix and graph

° A “good” partition of the graph has
• equal (weighted) number of nodes in each part (load and storage

balance).

• minimum number of edges crossing between (minimize communication).

° Can reorder the rows/columns of the matrix by putting all the
nodes in one partition together.

More on Matrix Reordering via Graph Partitioning

° “Ideal” matrix structure for parallelism: (nearly) block diagonal
• p (number of processors) blocks.

• few non-zeros outside these blocks, since these require communication.

= *

P0

P1

P2

P3

P4

What about implicit methods and eigenproblems?

° Direct methods (Gaussian elimination)
• Called LU Decomposition, because we factor A = L*U.

• Future lectures will consider both dense and sparse cases.

• More complicated than sparse-matrix vector multiplication.

° Iterative solvers
• Will discuss several of these in future.

- Jacobi, Successive overrelaxiation (SOR) , Conjugate
Gradients (CG), Multigrid,...

• Most have sparse-matrix-vector multiplication in kernel.

° Eigenproblems
• Future lectures will discuss dense and sparse cases.

• Also depend on sparse-matrix-vector multiplication, direct
methods.

° Graph partitioning
• Algorithms will be discussed in future lectures.

Partial Differential Equations

PDEs

Continuous Variables, Continuous Parameters

Examples of such systems include

° Heat flow: Temperature(position, time)

° Diffusion: Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)

° Quantum mechanics: Wave-function(position,time)

° Elasticity: Stress,Strain(position,time)

Example: Deriving the Heat Equation

0 1x x+h
Consider a simple problem

° A bar of uniform material, insulated except at ends

° Let u(x,t) be the temperature at position x at time t

° Heat travels from x-h to x+h at rate proportional to:

° As h 0, we get the heat equation:

d u(x,t) (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h
 dt h

= C *

d u(x,t) d2 u(x,t)
 dt dx2

= C *

x-h

Explicit Solution of the Heat Equation

° For simplicity, assume C=1

° Discretize both time and position

° Use finite differences with u[j,i] as the heat at
• time t= i*dt (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h)

• initial conditions on u[j,0]

• boundary conditions on u[0,i] and u[N,i]

° At each timestep i = 0,1,2,...

° This corresponds to
• matrix vector multiply (what is matrix?)

• nearest neighbors on grid

t=5

t=4

t=3

t=2

t=1

t=0
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

For j=0 to N

 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+
 z*u[j+1,i]

where z = dt/h2

Parallelism in Explicit Method for PDEs

° Partitioning the space (x) into p largest chunks
• good load balance (assuming large number of points relative to p)

• minimized communication (only p chunks)

° Generalizes to
• multiple dimensions.

• arbitrary graphs (= sparse matrices).

° Problem with explicit approach
• numerical instability.

• solution blows up eventually if z = dt/h > .5

• need to make the time steps very small when h is small: dt < .5*h

2

2

Instability in solving the heat equation explicitly

Implicit Solution

° As with many (stiff) ODEs, we need to use an implicit
method.

° This turns into solving the following equation:

° Here I is the identity matrix and T is:

° I.e., essentially solving Poisson’s equation in 1D

(I + (z/2)*T) * u[:,i+1]= (I - (z/2)*T) *u[:,i]

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

T = 2-1 -1

Graph and “stencil”

2D Implicit Method

° Similar to the 1D case, but the matrix T is now

° Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D grid.

° To solve this system, there are several techniques.

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =

4

-1

-1

-1

-1

Graph and “stencil”

Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs

° Dense LU N3 N N2 N2

° Band LU N2 N N3/2 N

° Jacobi N2 N N N

° Explicit Inv. N log N N N

° Conj.Grad. N 3/2 N 1/2 *log N N N

° RB SOR N 3/2 N 1/2 N N

° Sparse LU N 3/2 N 1/2 N*log N N

° FFT N*log N log N N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

 (see next slide for explanation)

2 22

Short explanations of algorithms on previous slide
° Sorted in two orders (roughly):

• from slowest to fastest on sequential machines.

• from most general (works on any matrix) to most specialized (works on matrices “like” T).

° Dense LU: Gaussian elimination; works on any N-by-N matrix.

° Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest
main diagonal.

° Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative
algorithm.

° Explicit Inverse: Assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it (but still
expensive).

° Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits
mathematical properties of T that Jacobi does not.

° Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits
yet different mathematical properties of T. Used in multigrid schemes.

° LU: Gaussian elimination exploiting particular zero structure of T.

° FFT (fast Fourier transform): Works only on matrices very like T.

° Multigrid: Also works on matrices like T, that come from elliptic PDEs.

° Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).

° Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

Relation of Poisson’s Equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at 0 is

 -(x,y,z)/r^3, where r = sqrt(x +y +z)

° Force is also gradient of potential V = -1/r

 = -(d/dx V, d/dy V, d/dz V) = -grad V

° V satisfies Poisson’s equation (try it!)

2 2 2

Comments on practical meshes

° Regular 1D, 2D, 3D meshes
• Important as building blocks for more complicated meshes.

° Practical meshes are often irregular
• Composite meshes, consisting of multiple “bent” regular meshes

joined at edges.

• Unstructured meshes, with arbitrary mesh points and
connectivity.

• Adaptive meshes, which change resolution during solution
process to put computational effort where needed.

Composite mesh from a mechanical structure

Converting the mesh to a matrix

Effects of Ordering Rows and Columns on Gaussian Elimination

Irregular mesh: NASA Airfoil in 2D (direct solution)

Irregular mesh: Tapered Tube (multigrid)

Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion.
°John Bell and Phil Colella at LBL/NERSC.
°Goal of Titanium is to make these algorithms easier to implement

in parallel.

Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place:
• Triangle, a 2D mesh partitioner by Jonathan Shewchuk.

° How to partition them:
• ParMetis, a parallel graph partitioner.

° How to design iterative solvers:
• PETSc, a Portable Extensible Toolkit for Scientific Computing.

• Prometheus, a multigrid solver for finite element problems on
irregular meshes.

• Titanium, a language to implement Adaptive Mesh Refinement.

° How to design direct solvers:
• SuperLU, parallel sparse Gaussian elimination.

° These are challenges to do sequentially, the more so
in parallel.

